

CALIFORNIA STATE SCIENCE FAIR 2002 PROJECT SUMMARY

Name(s)	Project Number
Christing R. Tanguay	A
Christine R. Tanguay	
	22641
Project Title	\sim
Do You Believe What You See? The Effect of Latera	Adaptation on
the Human Visual System	
	\sim
Abstract	
Objectives/Goals	
Is the effect of object size (field-of-view) on lateral adaptation in the human	isual system the same or
different for monochrome (grey scale) and color vision? My objective is to d	evelop a better
understanding of the contrast enhancement mechanisms of the human exe and	brain, and in particular to
understand the differences in behavior that occur in the color and site y-scale y	ision systems with respect to
the size of the perceived objects within the field of view. Hypothesis. Latera	hadaptation occurs in the
human visual system, and results in contrast enhancement for same-brighness	objects placed in different
the corresponding visual acuities are also different, we hypothesize that the	inimum fields of view for
grey-scale and color lateral adaptation may be different as well	inimum neids-or-view for
Methods/Materials	
Several sets of visual test targets, generated in Matlab and printed ou in both	grev-scale and color were
used.	8.9
A. We made up patterns of various sizes both in grey-scale and in color, with	different relative contrasts
and colors between the square objects and their backgrounds	
B. The patterns were shown to 22 different human subjects, placed at different	nt distances from each
subject.	
C. Each person#s observations were recorded as to now they perceived the bi	rightness or color of each
square when the patterns were presented at various distances from the observer.	
D. The data were analyzed to determine the sminathey and differences between the grey-scale and color image cases. Control patterns were used to eliminate observer bias	
Results	
The grey-scale lateral brightness adaptation effectives observed over the entit	e range of object sizes and
distances tested, right to the limit of human visual acuity. The chromatic adar	otation (color) effect was
observed over a nearly identical range of the sizes and distances tested.	
Conclusions/Discussion ((//))	
The minimum fields-of-view for grey-scale and color lateral adaptation are m	ore similar than different,
with both grey-scale and color adaptation working essentially all the way to the	ne limits of human vision.
This result is unexpected the to the traditional view of the specific mechanism	ns by which the brain
processes grey scale and solor information, and where in the eye and the brain	n grey-scale and color
information are exercised.	
Summary Statement	
In this project, we demonstrated that lateral brightness adaptation and chroma	tic adaptation can be
observed to amosy the limits of human visual acuity, contrary to the currently	accepted models of the
numan eye and brain.	
Help Received	
Father guided student through project offered suggestions and answered ques	tions and helped with the
Matlab and PowerPoint programs to develop test targets and charts. Mother's	olicited volunteers to be
experimental subjects, and helped with editing.	