Name(s) Alan D. Foreman	
Project Title Is Shorter Faster? Is the Fastest Way to Get from Poin Ato Point B along a Straight Line?	
Objectives/Goals Abstract Let A and B be two points at different heights. If the two points are connected bead is released from the higher point, is there a shape for the wire sothe the badijl arrive at the lower point in the shortest time? I plan to measure the time it takes for th pead togo from A to B on four typical curves: an inverted cycloid, a parabola, a circle, and a line	
Methods/Materials	
them onto a black foam board. Screw in eyelet screws abov dike startinspoyt and at the finishing point on each graph. Put the wires through the two eyes in the schers shapem so that they line up	
to be dropped each time and attach a bead to each wire Serm a vidg amera to record the results of the experiment. Drop the beads 5 times for each graph w rerording the experiment with a video camera.	
Replay the video in slow motion and measure the timd it took ly eath bead to drop. Repeat the experiment.	
The materials I used for this project were: 1 H at Duty Bryck Foam Board, a Camera, Green Wire, Film,	4 Medium Wooden Beads, a Video ©order, Bex Eyel Screws, a VCR, Black Duct Take, and a Stopwatch.
Results	
Conclusions/Discussion	
I conclude that the fastest way for a bead a a wiry to get from point A to another point B which lies below A , but not directly below A. is follo'y a path made by the inverted cycloid connecting those two points.	
The purde of his jhestigation is to determine the curve for which a bead traveling along a wire will arrive at a poict B hich is lower, but not directly below, another point A in the shortest time possible.	
Help Received	
My mother helped produce the computer plots of the graphs using Maple 6. She also helped with the videotaping of the experiment and the timing of the trials.	

