

CALIFORNIA STATE SCIENCE FAIR 2002 PROJECT SUMMARY

Name(s)	Project Number
Loff Chan	
Jen Chen	
	\land
	22748
Project Title An Alternative Method for Fabrication of Semiconductor Nanorods	
	\bigcirc \checkmark
Objectives/Cools Abstract	
The objective is to find an alternative method for fabrication of s	emiconductor hanoralis. A
template-method, whereby two solutions are diffused across a set	mi-permeable memorane (Nucleopore#),
will allow two solutions to deposit their precipitate directly in the	e porce of the membrane.
Methods/Materials	
Nucleopore# membranes, vials (plastic 1.5ml), pipettes Lead (II diluted). Detessium Iodide solution (1M solution to b) diluted)	Nitrate solution (.1 M solution, to be
quick clamp are needed to manufacture the nanorods. A Scatting	g Election Microscope(SEM) and a
Luminescence Spectrometer are needed to analyze the samp	g Electron in incroscope(BENI) and a
Procedure:	
First, the diffusion rates must be balanced; this requires varying	of solutions to produce a detectable
done by using a SEM or an optical microscope. The second step up this project is to verify the shape of the	
crystals. Place the membrane in cholorform and analyze it under a microscope. The last part of the	
experiment is to verify the semiconductor characteristics of the material. An ultraviolet light is used to	
excite the sample to show that there is an energy band gap. Additionally, a Luminescence Spectroscopy	
was done on the Lead (II) Iodide to test for a shift of the spectrum	n under different temperatures.
Results	homeone and can be easily detected by
eve. Concentrations of 01M for Lead and 03M for logide balances the diffusion rate for 5 micron pores	
However, this set of concentrations seems to change a little as pore sizes are varied. Rods are found under	
a microscope and the material#s light spectrum when shifts to higher energy with lower temperature.	
Conclusions/Discussion	
The diffusion method works for fabreating set iconductors. Precipitate in the membranes are	
Lead(II) Iodide#s hand gan bits cowards bigher energy at a lower temperature: this is a characteristic of	
a semiconductor. Variation of concentrations for balanced diffusion rates leads to a possibility of	
Cation-Permselective Benavior. The Lead (II) Iodide semiconduc	ctor nanorods might replace Cadmium
Sulfide as a semiconductor because their energy band gaps are sin	milar.
Summary Statement	
Using the diffusion method, nanorods are created inside of a template; through testing of semiconductor	
characteristics, these nanorods snow properties of being a semiconductor.	
Help Received	
I used a Mitutoyo optical microscope with a CCD camera, a Phillips field emission gun scanning electron	
microscope and obtained data from a microprobe luminescence spectrometer at University of California,	
Irvine under the supervision of Dr. Mike Zach.	