

CALIFORNIA STATE SCIENCE FAIR 2002 PROJECT SUMMARY

Name(s)	Project Number
Sukhjeet S. Batth	
	22894
Project Title	
Protein Profile Analysis: A New Application May Streamine Structural	
Predictions	\sim
	$\sim \sqrt{7}$
Abstract	
Objectives/Goals	invituable to scientist
everywhere. A pharmacologist working on creating a new drug, for example, c	sould analyze a protein
sequence with his computer and find its structure in seconds. Computational bit	iology is far more efficie
than the long, tedious analyses of structural biologists which include x-ray crys	alography and nuclear
magnetic resonance. The present study approaches this challenge from a very	specific position. A
alpha-belix packing	structural prediction for
Methods/Materials	
Profile Analysis was used to predict initial contact residues (i's) in packing diar	nonds of 4-3 alpha-hel
packing. Position-specific scoring matrices (profiles) were made from a structu	are correlated scoring
matrix and amino acid sequences from either $+3$ or $+4$ packing a phaselices. I	Different helix lengths wer
Reliability was also found with the use of leave-one-out and z-score analyses of	f predictions in
cholecystokinin.	
Results	
Profiles made from the helix range consisting of to 1,11 were determined to b	e the most accurate for t
prediction of both +5 and +4 packing alpha dences along sequences of known structure. In addition, leave-one-out and z-score analyses confirmed that predictions in cholecystokinin by profiles created frol	
the range i to i+11 were within the range of accuracy. These profiles predicted Leucine-13 and	
Arginine-31 as the initial contact residues of a +3 and +4 helix, respectively, in human cholecystokinin.	
Conclusions/Discussion	
Based on accuracy of predictions for known houces and further supported by re- the range of accuracy for cholece to bein, it pans that 4.3 alpha belix packing	relies beauily enough of
sequence to be predictable by this method. With further study, this application	of Profile Analysis coul
eventually replace the long, tellow, and costly analyses of structural biology for	or prediction of structures
which rely as heavily on soquence as 4-3 alpha-helix packing.	-
Summary Statement	
The present study attempted to predict a specific protein structure, 4-3 alpha-he	elix packing, using a
computer protein sequence analysis, Profile Analysis.	
Help Received	