

CALIFORNIA STATE SCIENCE FAIR 2008 PROJECT SUMMARY

Name(s)	Project Number
Natalie Dean; Zoe-Marlene Frei	10400
	JUIUO
Project Title	
High Winds and Low Roofs	
Objectives/Goals Abstract	
Introduction	
In a hurricane or in high winds, a roof of a house is prone to detaching from its walls. The problem of roof	
disengagement from homes is often approached with large metal bolts and special attachments that fasten	
the roof to the walls. However, this is both expensive and wasteful. It would be very useful if there was a	
way for roots to not part with the rest of the house as easily. We want to find out how variables such as	
the shape and angle of a roof affect the house's lift in high winds.	
Lift is the force that raises an object if air is flowing over the object faster than the air flowing under it.	
Because of the higher pressure below it and the lower pressure above it, the object rises toward the more desirable low pressure air. It will be interesting to find out what shapes and angles of roofs have the most	
and the least lift. To test our precedure, we will build a wind tupped and model houses and roofs	
and the least fift. To test our procedure, we will build a wind tunnel and model nouses and roots. Because airplane wings, which are designed for lift, are curved, we believe that if a roof is curved, its lift	
because airplane wings, which are designed for fift, are curved, we believe that if a fool is curved, its fift is higher then that of a gable roof. We think the lift on a shed roof is higher than the lift on a gable roof of	
the same angle because the wind will not have a smooth or symmetrical surface to flow over	
Methods/Materials	
tape.box fan. cardboard.box with dividers, thin plastic, foam core, glue gun, removable tape, electric scale	
that measures in grams, protractor, knife, Yardstick, Ruler	
Testing Procedure	
We built a wind tunnel with cardboard, placed a house with different shaped roofs inside. We messured	
with a scale the lift created by the wind. A fan blew wind in the tunnel.	
Results	
The steeper the pitch, the lower the lift. A 15° gable root has the same lift as a 15° shed root with the	
down force	
Conclusions/Discussion	
It was observed after a hurricane that most of the steep roofs were still attached to the rest of the house	
and the shallower roofs were detached. The lifts on the roofs shown in that graph support this idea	
because the shallower roofs have much more lift than the steep roofs.	
This experiment indicates that the safest roof angle on a house that avoids both lift and downward force	
where tornadoes or hurricanes are common is around 30 or 35°. If an avoidanc	e of lift alone is the primary
concern, then the data indicates that steeper is better.	
Summary Statement	
How the angle and shape of a roof affects its lift in high winds	
Help Received	
Nathalie's mother helped to make the wind tunnel and solved problems with the graphs.	