

Name(s)	Project Number
Michael C. Binon	
	JU9U3
Project Title	
Portable Antennas	
Objectives/Goals Abstract	
My goal to test and select the antenna which represents the best compromise of volume, mass,	
ease-of-construction, ease-of-erection, and gain when used in portable operation with a backpack HF transceiver	
Methods/Materials	
1. Select four antennas for the project, i.e. a ground plane, an end-fed wire with a counterpoise, a	
¹ / ₂ -wavelength dipole, and a 1-wavelength loop.	
2. Fabricate and test 1/10 scale models 3. Fabricate full scale antennas. Evaluate case of construction	
4 Pack the antennas for weighing and measuring the volume	
5. Erect the antennas and evaluate for ease-of-erection. Measure SWR to calculate correction for SWR	
and feedline losses.	
6. Test the antennas for gain relative to the $1/2$ wave dipole.	
7. Average the data collected in step 6 to determine relative antenna gain.	
Results	
The end-fed wire was the easiest to set up but it preformed the worst. The loop was the best preforming,	
but it was the hardest to set up. The dipole and the ground plane had the same performance but the ground	
plane only had one wire that needs to be hung. There was a lot of wire when it came to volume so I had to	
any certain length	
Conclusions/Discussion	
After all of the data I collected, I found out that the end-fed wire with a counterpoise was the easiest to set	
up, but it also had a 15 db. loss over the dipole which we used as our reference antenna. I also figured out	
same gain. I concluded that the dipole best met my criteria	
Summary Statement	

My goal to test and select the antenna which represents the best compromise of volume, mass, ease-of-construction, ease-of-erection, and gain when used in portable operation with a backpack HF transceiver.

Help Received

My teacher and fellow students helped erect and test my antennas; Used playground at Granite Bay Montessori school