

CALIFORNIA STATE SCIENCE FAIR 2011 PROJECT SUMMARY

Name(s)	Project Number
Isabel N. Goronzy	
	31469
Project Title	
Stress Hormones, DNA Damage Repair, and Cellular	Aging)
6	$\sum \sum$
Objectives/Goals Abstract	
Studies have shown that excessive stress compromises health and accelerates as stress hormones inflict DNA damage leading to nuclear instability apd collular	ang. D determine whether
stress hormones inflict DNA damage leading to nuclear instability and callular	ging, he effects of the
catecholamine epinephrine, an acute stress hormone, and the steroid dexamethat DNA damage and the DNA repair machinery were examined.	sone, a chronic stressor, on
Methods/Materials	7
The impact of epinephrine and dexamethasone on DNA intactness and collular	function was tested in the
T cell line Jurkat. Cells were cultured with increasing amounts of both hormone DNA damage stress with H2O2. DNA was extracted and DJA damage leajons	es and then subjected to
a tag to abasic sites (lesions typically formed from oxidative stress) and quantif	ving by ELISA (OxSelect
Oxidative DNA Damage Quantification kit, Cell Biolabs). Functional intactnes	s was assessed by
Oxidative DNA Damage Quantification kit, Cell Biolabs). Functional intactnes determining the expansion capacity of the cells in culture. Cell numbers were e	numerated by counting
with a hematocytometer. Results	
When exposed to H2O2, cells conditioned in epinephrine (19-10) umol/mL) ac	cumulated higher loads of
When exposed to H2O2, cells conditioned in epinephrine (10-100 umol/mL) ac DNA lesions than cells cultured in medium alone. Furthermore, epinephrine-pr	etreated cells expanded
less efficiently after DNA damage reaching or what so the dell numbers seen i	n control cultures.
Dexamethasone lowered the levels of H2O2 induced abasic DNA lesions in a c cells preconditioned in 100 umokmL carried less than one third the number of A	lose-dependent fashion;
in the absence of dexamethasone. Protection from DNA damage translated into	enhanced growth capacity
in the absence of dexamethasone. Protection from DNA damage translated into of dexamethasone-pretreated cells in which cell recovery was double as high as	sin
dexamethasone-untreated cells.	
Conclusions/Discussion Physiologic doses of the two major stress homeories epinephrine and dexamethe	asone markedly influence
cellular responses to oxidative DNA amage. The adrenal catecholamine epine	phrine impairs DNA repair
and cellular growth. Converse x , the steroid hormone dexamethasone enhances	DNA repair and promotes
cellular proliferation. Excessive amounts of epinephrine undermine cellular hea and deplete the organism of cells. Dexame has one may have a role in adapting	lth, foster DNA mutation
and could possibly be used in therapies enhancing tissue regeneration.	the cen to persistent stress
Summary Statement	
Acute and chronic stress hormones have drastic and opposing effects on cellula growth, affecting the healthy aging and well-being of every individual.	r DNA damage and
growin, uncounty in nouring und worr come or every marvidual.	
Help Received	
Used lab equipment at Stanford university. Dr. Li, research associate, extracted postdoctoral fellow, assisted with the ELISA.	DNA. Dr. Shao,
posidocioral tenow, assisted with the ELISA.	