

CALIFORNIA STATE SCIENCE FAIR 2011 PROJECT SUMMARY

Name(s)	Project Number
Jessica A. Richeri	
	31516
Project Title	
Autonomous Robotic Vehicle's Guide to Eliminate the Vraffic Problem	
	\sim
6	$ \times $ $ \times $ 7
Abstract (
Dijectives/Goals By 2020 the number of core will double leading to more traffic isome and and	to U.S. there are
fewer options to add more roads or to even create more lanes. A smarter transpo	rts on system is needed
and the first step is to create intelligent cars that can operate autonomically My	negect implementation
has three major milestones within 1 to 25 years: (1-5) The Marginal Protection	System is like a the car's
virtual hubble, helping the driver be aware of where obstacles are and avoid the	(5-10)
Semi-autonomous Carpool Lane, the vehicles will be able to go up to speeds of	100 mph, a couple feet
away from each other, and (10-25) Fully Autonomous Car, with vehicles drivin	g autonomously from
point A to B.	6 ····· 5
Methods/Materials	
I took a remote controlled car, removed the transmitter and connected an array	of infra-red sensors and a
LIDAR. A camera with a variable lens was used to capture the mage, and send	to the Processing Cluster.
The onboard hardware was connected to a Tablet PC. This year I installed a GP	S system connected to a
TTL RS232 and increased the computer power to six HP DL360 Servers Quad Core. The cluster runs	
Windows Server 2003 R2 and 2008 R2, to do the mage processing. I added HP Storage Works MSA1000	
fibre channel share drive system to increase the handling of the captured video. I created these modules:	
Obstacle Detection and Avoidance, Patern Recognition with Multistage Recog	nition, Benavior
Bosults	
For my final test I created a Mirsia Plan with GPS way noints on a running tra	ock As soon I turned it on
the car went around the track from beginning to end time after time. To test the	obstacle detection I
placed obstacles on the lanes making the car changed anes to the left or right de	prending where the
unobstructed lane was. When I obstructed all takes the car stopped before the h	parrier
Conclusions/Discussion	
My project creates a vehicle the cap rive autonomously, follow a mission plan	nner, and recognize and
avoid obstacles with a cost of paly a couple thousand dollars; confirming that a	cost-efficient autonomous
car is not a pipe dream. After three years and over 20,000 lines of programming	, I not only designed and
implemented the hardware and software for this project, but also a safer and mo	ore convenient approach to
modifying our ancient and proken highway system eliminating traffics jams wit	hin a realistic timeline
Summony Statement	
Summary Statement	
I created a cost efficient autonomous car that can navigate from point A to poin	t B without pre-knowledge
of the environment and prevent traffic jams and accidents.	
Help Received	
Eather recorded the videos and design for the display heard. School helped with	the metal components
autor recorded the videos and design for the display board. School helped with	i ine metar components.