

CALIFORNIA STATE SCIENCE FAIR 2011 PROJECT SUMMARY

Nome(s)	Ducient Number
Ivaine(s)	Project Number
Eleanor O. Frost	
Project Title	
Steel Stays Hot While Other Metals Do Not	
	\sim
Abstract (
After an experience in the kitchen with a skillet I wanted to test four common	etals and their resistance
to a change in temperatures. My hypothesis is that the cast iron would coll the	e slowest due to my
experience in the kitchen and the aluminum would cool the fastest.	O
Methods/Materials	\checkmark
I warmed four metal blocks in the oven to a steady temperature. I took them o	ut of the oven and
measured the temperature at the center of the blocks as they cooled in three dif	ferent environments: still
air, in front of a high speed fail and in all ice dath. I measured the block temper and a digital thermometer every two minutes and then two readings at the bod	of each experiment at 10
minutes each. I conducted multiple tests and average the results. The slocks w	vere the same size and
volume, but different mass and different heat constants. Take calculated m x	C for each metal, which
allowed for some interesting interpretation and prediction of the graphed data.	The metals tested were
copper alloy, aluminum alloy, stainless steel and cast ton.	
Results	1.1 1 1 1 1.1
The stainless steel remained hot the longest, showing the most thermal inertia	while aluminum showed the
stainless steel graphs	the arunnum and the
Conclusions/Discussion	
Once the blocks came out of the oven, they were governed by the first and second laws of	
thermodynamics. An example of the first law is the heat transferring from a hot skillet to the food in it	
even though the gas is turned off. A common example of the second law comes from the laundry. No	
matter how long the drier runs, none on the laundry boming out of the dryer will be neat, even though that	
outcome is theoretically possible. And any one who has done the laundry will t	ell you that it does require
work to make the faundry heat after coming out of the dryer.	
Stainless Steel demonstrated the most thermal inertia, Resistance to temperatur	re change and aluminum the
lowest. So if you want to have food cooking after the gas is turned off, stainle	ss steel is the best material.
But, when mom cooks a big meal and the kitchen gets very hot (Dad is relucta	nt to turn on the air
conditioner), aluminum mucht be a good material selection for pulling the that	waste heat out of the
kitchen and putting hund the bot water heater. If we did this, we would use le	ess gas to heat the hot water
Summary Statement	
I hasted four Deales of dissimilar metals and measured their temperature as the	w accled in three
enviorments	by cooled in three
Help Received	
mom and dad helped measure the temperatures and watch the timer. My teach	ers helped me with the
basic science behind my project.	