Name(s)
Anin Sayana

Project Number
J1724

Project Title
A Novel Configuration of Carbon Nanotubes to Selectively Target Chemotherapy-Resistant Cancer Stem Cells

Abstract
Current chemotherapy methods to treat cancer do not eradicate all of the cancer cells, and a relapse of the tumor often occurs because of a subpopulation of self-renewing and self-differentiating cells called cancer stem cells (CSCs). CSCs express the surface marker CD133 and the membrane transporter protein ABCG2, which induces chemotherapy resistance. I hypothesized that chemotherapy drugs can be made more effective in targeting CSCs by loading the chemotherapy drug and the ABCG2 inhibitor Imatinib into a multi-wall carbon nanotube (CNT) conjugated with the CSC-specific anti-CD133 antibody.

Methods/Materials
L1210 Leukemia Cells were grown in 30 flasks for three weeks in DMEM+FBS+Penicillin/Streptomycin. A FACS flow cytometry test was conducted, in which 1×10^4 cells were conjugated with the FITC anti-CD133 antibody and analyzed to determine the percentage of CD133-expressing cancer stem cells. Additionally, 2.5×10^4 cells were tested for chemotherapy resistance, a property of CSCs, using ethidium bromide. To test for destruction of CSCs, CNTs were conjugated with the anti-CD133 antibody, Imatinib (IM), and ethidium bromide (EB). Cells were treated with this configuration and 10 combinations of EB, IM, CNT+Anti-CD133 Antibody, using 2.5×10^4 CSCs per test. Each test was repeated four times, for a total of 40 tests. Healthy cells with the CNT combination were tested for cell viability. Finally, a SEM analysis and student t-test were conducted.

Results
CSCs identified by flow cytometry expressed chemotherapy-resistance, as < 1% of the cells were nonviable when treated with EB and EB+IM. For CSCs treated with CNT+Anti-CD133+EB+IM, > 99% of the CD133+ expressing CSCs were nonviable, while healthy cells were viable. The nonviability rate of CNT+Anti-CD133+EB was 7.5%, Imatinib alone was 5.5%, and CNT+IM+Anti-CD133 was 5.75%. The SEM images proved the binding of the CNTs to the cells. A p-value of p < 0.001 from the student t-test showed an extremely significant statistical difference between the values.

Conclusions/Discussion
The FACS and the chemotherapy resistance tests identified the CD133+ cells and proved them to be chemotherapy resistant, and the novel CNT configuration successfully destroyed the cancer stem cells. The incorporation of the Anti-CD133 antibody, ABCG2 inhibitor imatinib, and chemotherapy drug in carbon nanotubes shows promise for the treatment of conventional-cancer-therapy-resistant CSCs.

Summary Statement
I identified a population of chemotherapy-resistant CD133+ cancer stem cells, created a carbon nanotube configuration to selectively target the CSCs, and tested this combination's effect on cancer stem cell viability.

Help Received
Dr. Ali Haghihigi for advice and supervision of use of lab equipment; Dr. Megan Suhoski from Stanford University for advice on initial research; The Nanomaterials and Nanostructures Laboratory for use of the SEM; Dr. Han-Shui Hsu for providing research articles; my science teacher and parents for support.