

CALIFORNIA STATE SCIENCE FAIR 2015 PROJECT SUMMARY

Name(s)	Project Number
Patrick Z. Yu	
	35508
Project Title	
Developing Efficient Algorithms for Self-Navigating Vehicles	
	$\sum \sum$
Objectives/Goals Abstract	
The purpose of this study is to develop efficient algorithms for self navigating	chicles to maneuver
around roads. To simulate a self driving car, I created an optimized algorithm a	nd programmed it on a
self-driving robot to navigate through different kinds of mazes. I used two other	r existing algorithms for
comparison.	
Methods/Materials The two existing algorithms are the Random Algorithm and the Right-Lett Alg	withm and the optimized
version of the Right-Left is the Loonable Right-Left Algorithm. I spent the most	st time on developing the
version of the Right-Left is the Loopable Right-Left Algorithm I spent the most Loopable Algorithm and then blended this looped feature with the existing Right	ht-Left Algorithm. To
prove the new algorithm was superior to the two existing ones. I used surgers to	to test the robot. The first
maze contained 2 three-way intersections. The second maze with 2 four way in	tersections and 1
three-way intersection. The third maze contained 3 three-way intersections, 1 for	our way intersection, and a
loop. I placed the robot in the three mazes and ran it through 6 times for each all of 18 data points per maze and recording the runtimes after each un. I plotted t	gorithm, compliing a total
deviations from the runtimes to determine the optimal algorithm	ne averages and standard
Results	
After 6 trials, I compared the runtimes. The Loopsble Right Left Algorithm pro	oduced the best results,
solving all three mazes in shortest time by completing Mazes 1, 2 and 3 in 7, 15 and 22 seconds	
respectively. The runner-up was the Right Let, which produced the identical runtimes as the Loopable	
Right-Left for the first two mazes, but was not able to solve Maze 3. The worst algorithm of the three was the Random Algorithm, completing the three mazes in 15, 32 and 72 seconds respectively.	
Conclusions/Discussion	
The results clearly demonstrate that the Loopable Right-Left Algorithm is superior to the other two in	
terms of stability efficiency and speed. After severing four consecutive identical turns in a certain	
direction, the robot knows it will be cuck in a sectangular loop. To exit out of this loop, the rules are reversed, allowing the robot to successfully exit so it doesn#t follow the same path. The Right-Left	
Algorithm yielded similar routines for the first two mazes, but did not run as w	vall as the Loopable
Right-Left due to its incapability to recognize loop patterns. Finally, the Rando	m Algorithm performed
the worst, as it chooses a handom direction without evaluating it.	
Summary Statement	
This protect#s goal is to create an optimal algorithm for robots to navigate all k	inds of mazes with the
fastest times and best stability.	
Help Received	
My mentor Dr. Ismail helped in developing my test procedure and reducing the	
debug the algorithms. My brother helped me edit my abstract and presentation.	