

## CALIFORNIA STATE SCIENCE FAIR 2015 PROJECT SUMMARY

| Name(s)                                                                                                   | Project Number                |
|-----------------------------------------------------------------------------------------------------------|-------------------------------|
| Vedaad Shakib                                                                                             |                               |
|                                                                                                           |                               |
|                                                                                                           |                               |
| Project Title                                                                                             | 35660                         |
|                                                                                                           |                               |
| Computer Simulation of Free-Surface Fluid Flow Using NPS                                                  |                               |
|                                                                                                           |                               |
|                                                                                                           | $\sim$                        |
| Objectives/Goals Abstract                                                                                 |                               |
| When mixed liquid and gas fluid flows undergo violent motions, a free surface                             | forms between the liquid      |
| and the gas. If the motion is severe enough, such as the breaking of a dam or oi                          | lubrigation in an engine,     |
| the shape of the free surface becomes increasingly complex. Traditional numeri                            | ical simulations of fluid     |
| flows, for example finite difference, finite volume and finite element technolog                          | iegare incapable of           |
| simulating such severe free-surface fluid flows due to their reliance on grids, the                       | e decomposition of the        |
| volume into small, regular snapes, to interpolate velocity and pressure fields. So                        | ethods are pecessary for      |
| solving severe free-surface flows. One such proposed method is the #Moving P                              | Particle Semi- Implicit#      |
| (MPS) method, developed by S. Koshizuka and Y. Oka in 1996. Instead of utili                              | izing a grid, MPS relies on   |
| an approximation kernel function to reconstruct the velocity and pressure field                           | at each given particle        |
| position based on the surrounding particles. These values are necessary to appro                          | oximate the spatial           |
| differentials of these fields, which are integral to solving the Navier Stokes equations, the governing   |                               |
| equations of fluid motion, for each particle. This research project attempts to co                        | ode a unique                  |
| niplementation of the MFS theory using model in agoing its oppunitize perior.                             | mance in the C                |
| Methods/Materials                                                                                         |                               |
| The software consists of an input phase, where the walls and fluid of the proble                          | em are artificially           |
| constructed, and a time-stepping algorithm, where the gravity and viscosity are modeled using an explicit |                               |
| algorithm and the conservation of mass is solved using the solution of a pressur                          | re Poisson equation.          |
| Kesuits<br>The program's performance is tested with sample tem break problem. The sec                     | ftwara's output closely       |
| resemble experimental values extracted from iterature validating the feasibility                          | v of the implementation of    |
| the MPS method.                                                                                           | y of the implementation of    |
| Conclusions/Discussion                                                                                    |                               |
| The program is extremely sensitive to user-inputted values, illuminating the new                          | ed for a stabilizer. The next |
| step in extending this project is to enhance the robustness of the solutions by in                        | corporating numerical         |
| Algebraic Multi Grid solution to the pressure Poisson equation                                            | n algorithm and an            |
| Algebraic Multi-Ond solver for the pressure rolsson equation.                                             |                               |
|                                                                                                           |                               |
| Summary Statement                                                                                         |                               |
| This project computationally solves the differential equations proposed in the N                          | Aoving Particle               |
| Semi-Implicit theory in order to create a coherent software that is able to simula                        | ate free-surface fluid flows  |
| with violent motions over time.                                                                           |                               |
| Heln Received                                                                                             |                               |
|                                                                                                           |                               |
|                                                                                                           |                               |
|                                                                                                           |                               |
|                                                                                                           |                               |