

CALIFORNIA STATE SCIENCE FAIR 2015 PROJECT SUMMARY

Name(s)		Project Number
Yana D. Petri		
		3570
Project Title		
Modeling CMIP5 Proj	ected Climate Chang	ge Impacts on Chobal
Chiropteran Species-R	ange Shifts under R	CP Emission Scenarios
		$ \longrightarrow $
Objectives/Goals	Abstract	
The IPCC estimates that a 2-3C m	ean temperature rise would c	critically endanger 25% of the species
While projecting habitat shifts of	terrestrial mammals is vital for	or mitigation policies, studies addressing
this topic are rare due to modeling	complexity/uncertainty. If C	Chiroptera (bats) are used as bioindicators,
calculations could be simplified a	nd help identify potential zoo	onotic disease (e.s. Ebola) hotspots. The
goal of the project was to model, u	using MaxEnt, the present (19	950-2000) global Chiroptera distribution
and compare the resultant occurre	nce probabilities to those gen	nerated under RCP2.6 (low emissions) and
RCP8.5 (high emissions) future so	cenarios (2061-80). Greatest	niche area reduction was expected to occur
under RCP8.5.		
Nietnods/Niaterials	n CDIE and alaanad in S	OI and $AcaMan 10$ Brasant (1050 2000)
and future (2061 80 under PCP2	6 and PCP8 5) climped at a	DL and Arcinapio. Present (1950-2000) Fr BIO (annual mean temp) BIO (temp
seasonal) BIO6 (min temp of the	coldest month) BIO15 (rain	for Divid (annual mean temp), DIO4 (temp full seasonal) and BIO17 (rainfall of driest
guarter) was obtained as ESRI GR	SID files from WorldChin Fi	uture data was created using an average of 3
CMIP5 models. Species records.	environmental lavers were in	protect to MaxEnt and global maps of
probabilities of bat occurrences in	the present and future were	generated.
Results		-
In the present and future periods,	probability of bat occurrence	was low in the temperate and frigid zones
(northern Canada, Alaska, Green	and, Russia) and high in the t	tropics. Niche isolines moved up under both
scenarios, but the greatest norther	n shift occurred under RCP8.	.5, which exhibited the greatest decrease in
bat habitat area. Bat distribution u	ther RCP2.6 changed little c	compared to that of the present. Based on
contribution to the model. Analysis	is of ADC/Omission statistic	s for the present and future indicated that
models had a better than random	bertosmance	s for the present and future indicated that
Conclusions/Discussion		
The hypothesis that the greates ba	a habitat reduction would oc	cur under high-emissions RCP8.5 scenario
was supported, suggesting that the	policy would induce similar	r global shifts in the niche of terrestrial
mammals. Models were deemed s	tatistically significant and po	otentially useful for ecologists, policy
makers, and epidemiologists.	\mathbf{O}	
	•	
Summary Stationant	4	
Summary Statement		
I ne effects of climate mitigation j	bolicies RCP2.6 and 8.5 on 20	ubi-80 global bat habitat were modeled
of numerous terrestrict mammals	Jule need in reducing OHO e	emissions in order to prevent the extinction
or numerous terresultarinantilais.		
Help Received		
Teacher and mentor Renee Fallon	provided advice and support	t. Modeling was conducted at home using
open-source GBIF, WorldClim, and	nd CMIP5 data.	