

CALIFORNIA STATE SCIENCE FAIR 2015 PROJECT SUMMARY

Name(s)	Project Number
Tanisha Joshi	
Project Title	35766
The 99¢ Clinical Trial: Accelerating Trials in Software for ErbB2	
Pathways and Lapatinib on Metastatic Breast Cancer 🔨 🗸 🗸 🗸	
	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Abstract	
Objectives/Goals	
6540 breast cancer clinical trials are being performed in the world and the drug	If e cycle takes an average
of 14 years. The average pre-tax industry cost per new prescription drug approv	al (inclusive of failures
and capital costs) is \$2.55b. Accelerating fast failures can dramatically reduce of	lrug approval costs and
improve drug behavior predictability substantially. With this model software, p	hapmaceutical scientists
can predict drug behavior in 21 min (instead of 21 days) by simulating virtual	rials which are predictive
pharmacogenomic models of ErbB2 activated signaling pathways in conjunction	n with Lapatinib (CAS
388082-78-8). Accelerating the experiment (1440 times faster involves modeli	ng the Mechanism of
Action of Lapatinib ditosylate and Capecitabine in a cell region physiology exh	ibiting overexpression of
ErbB2 (2-6 copies), a sub-cellular biomarker of advanced (Stage V) newstatic	breast cancer. The goal is
to successfully complete a virtual trial in software to predict the drug response of	of Lapatinib for
HER2-positive advanced metastatic breast cancer, in a digital micro-thopsy cell	region matrix. The results
will be validated with a corresponding clinical trial of women in Crina. Methods/Materials	
MacBook Air 4GB 1600 mHz Intel Core i5 was used for testing	
Results	
It was observed that the natural DNA repair mechanisms remained unaffected b	w tumor growth because
the dysregulation of the Ras mediated MARK signaling partway only amplified	cell proliferation signals
The Clinical Benefit Rate (CBR) was found to be in the range of [43.2%, 71.3%]. Also the adverse drug	
reaction (ADR) was in the proximity of 3.8% (at 5% level of significance) Lapa	atinib molecules were
consistently engaged in a repair mechanism that increased their utilization and I	left a smaller quantity of
substrate.	fore a sinarior quantity of
Conclusions/Discussion	
I developed a clinical drug study tool, that follows a computationally and econo	mically scalable (less than
\$1 per patient) model which simulates the Erb 2 signaling pathways and their r	response to Lapatinib. The
software algorithms that I built woold potentially allow pharmaceutical scientis	ts to rapidly permutate
over millions of patient biologies and candidate drug structures based on rule se	et specificity. All software
is on GitHub and available apon request.	
Summary Statement	
The project involves pharmacological modeling of a advanced/metastatic breas	
software based on measurement of drug response on pharmacogenomically gen	erated patient biologies.
Help Received	
Industry Drug Researcher Archana Gangakhedkar at Xenoport Clinically Validated Software Results	