

CALIFORNIA STATE SCIENCE FAIR 2015 PROJECT SUMMARY

Name(s)	Project Number
Matthew C Krock	Λ
Watthew C. River	
	35836
Project Title	$\overline{\mathbf{O}}$
Use of Period IV Transition Metal Salts to Optimize Solar Powered	
Flectrolysis of Water for Hydrogen Cas Production	
Abstract	
Objectives/Goals Abstract	
The objective is to expand upon previous personal research and focus on a con	parison of the electrical
efficiency of iron (III) and copper (II) salts in phosphate solutions with the inte	ent of optimizing the solar
powered electrolysis of water for the production of hydrogen gas. This in turn	may be subsequently used
to produce electrical power through the use of fuel cells in the absence of sunli	Shy
Methods/Materials	
0.1 M solutions of iron (III) nitrate and copper (II) nitrate were added to 1 M r_{1}	solutions of monobasic
potassium phosphate (KH(2)PO(4)) to form a combined solution. Electrical ou	ment was supplied to 50
was collected by the displacement of water. Input energy was calculated by the	Acution E-IVt. The
amount of hydrogen gas was computed by the equation PV sRT and the note	ntial output energy that
could be obtained from a fuel cell was calculated by multiplying the woles of t	hud output energy that
Gibb's Free Energy of the synthesis of water. The input energy was compared to	to the output energy in
order to calculate the efficiency of using each combined solution for the electro	olysis of water.
Results	
While the iron (III) solution produced a peak of 0.00042 moles of hydrogen gas at 100 mA, the copper (II)	
solution produced a peak of 0.00017 mples of hydrogen gas. As a result, the iron (III) solution proved to	
be more effective at producing hydrogen grs. Despite the success of the iron (III) solution, however, the	
copper (II) solution had the capacity to convert 4 percent of its input energy into output energy similar to	
the iron (III). This suggests that the sopper (II) solution is efficiency is equal to	ditions of low suplicit
while the iron (III) is ontimel for conditions of high curlicht	attions of low sumight
Conclusions/Discussion	
Because the iron (III) solution conducted twice as much current and produced	twice as much gas as the
copper (II) solution, this supports the hypothesis that salts with cations possess	ing more numerous
oxidation states are better suited for use as catalysts for the electrolysis of water	er. Future experimentation
may look into cations with more numerous oxidation states than iron, such as r	nanganese.
	-
Summary Statement	
Optimization of phosphate-buffered transition metal catalysts for the efficient	solar powered electrolytic
generation of hydrogen gas to be used in hydrogen fuel cells as a renewable po	ower source in the absence
Heln Received	
Chemicals were supplied by Norco High School glassware advice and facilities were supplied by my	
father	ies were supplied by my