

CALIFORNIA STATE SCIENCE FAIR 2015 PROJECT SUMMARY

Name(s)	Project Number
Hope Lee	
	35940
Project Title	
A Novel Method to Immobilize Ionic Liquid in Alginate/Gelatin	
Polymer Beads for Heavy Metal(s) Removal	
	\sim 7
Abstract	
The purpose of this scientific study was to design a novel effective a	nd histilvafficient immobilized
ionic liquid approach towards removal of heavy metal(s) from an aque	ous environment. It was predicted
that increased amounts of ionic liquid would remove a greater proper	ion of the $Cu2+$ from the aqueous
environment and that the system would be superior to traditional ME	in terms of efficiency, economic
Methods/Materials	\setminus \vee
The ionic liquid chosen was trihexyl (tetradecyl) phosphonium bis (2.4	trup ethylpentyl) phosphinate
(CYPHOS IL 104), a synthesized organic compound which consists of	f ions of both charges and is liquid
at room temperature. For this study, copper ion (Cu2+) was selected a	a model system to demonstrate the
immobilized CYPHOS IL 104 concept. Gelatin and sorium alginate	refe selected to immobilize and
Results	
The optimized composition for the immobilized ionic liquid solution v	vas identified through a DOE model
as approximately 0.33% gelatin (w/w), 0.33% source (w/w),	and 33% IL (w/w). The
immobilized IL beads ultimately removed a maximum of over 98% of	Cu2+ from 6 mL of 50 mM Cu2+
were successfully stripped and regenerated by 1N NaOH and was able	to remove over 98% of Cu^{2+} from
6 mL of 50 mM Cu2+ solution when used again.	
Conclusions/Discussion	
There are several large benefits to this hamobilized ionic liquid approx	ach: [1] drastic reduction in overall
processing time, [2] reduction of CYPNOSTIL 104 material lost durin chance of CYPHOS# II 104 contamination in the water [4] units mot	ig process, [3] reduction of the
be handled dry as well), and [5] significant reduction of the total cost f	from raw materials and operation.
This developed approach abides by many Green Chemistry principles.	ľ
Summary Statement	
The purpose of this coentific study was to design a novel, effective, and highly efficient immobilized	
ionic liquid approach towards removal of heavy metal(s) from an aqueous environment.	
Help Received	
Father supervised while working at home	