Name(s)
Peter B. Beer

Project Number
J1002

Project Title
The Efficiency of Using FerroFluid and Magnets to Remove Oil Spills from Water

Objectives/Goals
The objective was to determine if ferrofluid and magnets will work as efficient agents to remove oil from water and to determine if the match between the type of oil spilled and the ferrofluid's carrier fluid affects efficiency. A second objective was to determine if oil will be removed more efficiently in fresh water than in salt water because the salinity could affect magnetism by weakening the magnetic field.

Methods/Materials
Vegetable, mineral and motor oils were measured (2.5ml) and placed in petri dishes containing 14 ml of fresh water. One dish contained mineral oil and salt water. Ten drops of ferrofluid with mineral oil as its carrier fluid was added to each dish. Neodymium magnets were placed in a plastic bag and dragged through the oil spill 6 times in a circular motion. The remaining substance was poured into graduated cylinders and recorded for amount of oil left behind and observed for any remaining ferrofluid.

Results
Ferrofluid and magnets were consistently effective in removing mineral oil from fresh water with efficiency quotients of .9/1.0, .8/1.0, .7/1.0. Removal of mineral oil from salt water was less effective (.4, .6, .6), but more effective than removal of motor and vegetable oils from fresh water.

Conclusions/Discussion
As predicted, ferrofluid's carrier fluid must have similar characteristics to the oil being extracted in order to remove the maximum amount of oil. Salt water reduced the amount of oil removed because salinity weakened the magnetic field.

Summary Statement
Can Ferrofluid and magnets effectively remove oil spills from different types of water without further hurting the environment and without spending a lot of time, money and resources.

Help Received
Mother helped manage ferro-fluid properly for safety.