

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Arma T. Diana	
Anna I. Kloux	
	8172
Project Title	
Turning Farm Waste into Usable Energy: Investigating/Energy	
Production of 3-D Printed Microbial Fuel Cells	
Abstract	
Objectives/Goals	
The purpose of this experiment is to economically engineer and test 3-D printed Microbial Fuel Cells	
(MFC) in a series connection for use in large scale application like a dark or wistewater treatment facility. I hypothesized that CAD 3 D printing software can be used to design an AFC that will be able to	
produce a measurable amount of energy Eurthermore. I hypothesized 3-D prined MECs will produce a	
greater amount of energy in series connections than by themselves	
Methods/Materials	
The research and design phase reviewed multiple CAD 3-D printing software programs to determine the	
most functional and economic tool for designing the MFCs. Using Tinker ad STL files were prepared for	
printing on Lulzbot Taz 4, a second model was printed on a Flash Forse reator Pro. Alpha filament and	
PLA plastic materials were used to print the prototypes. Then multiple rials were conducted using 45 mg	
of cow manure farm waste in the anode, and 35mg of saltwater solution in the anode chamber. Electrodes	
sized 3 cm x 3 cm were placed in the chambers, and an agar solution was used for the salt bridge. Twice	
Bogults	
An MEC was printed using economical CAD software However, due to printer limitations there were	
dimension constrains. The experimentation demonstrated that both the individual and series connected	
MFC could consistently produce measurable energy. However the individual MFC produced a greater	
amount of energy, 1.08 watts; in comparison the series connection yielded 0.88 watts. In general the	
individual MFC produced a greater amount of voltage, 54 mV versus 85 mV; but, a similar amperage	
between 4 and 11 mA for the individual and 1 to 5 mA for the series connection.	
Conclusions/Discussion	
A functioning MFC was engineered, and the results indicate that the individual MFCs are more efficient	
than the MFCs in series connection. The next step in this research would be to increase the size of the 3-D	
membrane to increase output Additionally development of a power management system, including a	
boost converter for energy to they be stored in an external battery for future consistent flow of energy	
will be reviewed. These modifications will be necessary before applying this technology to a large scale	
use on a dairy or waste water treatment facility.	
Summary Statement	
Using CAD softward designed economical 3-D printed MFC prototypes to use in series connections for	
the purpose of creating an inexpensive way to turn farm waste into usable energy, for large scale use.	
Help Received	
I designed the MECs prototypes using CAD software. Then I submitted STL files to Doug Cairns of	
TCOE and Nelson Sebra of Fresno State#s Lyles Center they printed my prototypes MFC on 3-D	
printers.	