

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Name(s)	Project Number
Puiita S. Tangirala	A
i ujita 5. Taligitala	
	38416
Project Title	
A Green, Low-Cost Solution for the Removal and Recovery of Dye from	
Industrial Wastewater (A Second Year Study)	\sim 0
	$\sim \sqrt{7}$
Objectives/Coals Abstract	
Dyes are used in many industries Because the process of cleaning dye out of	wastewher is expensive a
cost-effective, eco-friendly method is needed. The purpose of this project wa	is to test the effect of
temperature on adsorption and pH on adsorption and desorption of avery spent tea leaves (STL) and to	
find the maximum adsorption capacity and percent desorbed by performing	continuous studies. The
hypothesis was that a higher temperature and pH would lead to more adsorpt	ion and a lower pH would
lead to more desorption.	1
STI was prepared by washing drying grinding and sieving the residue	column adsorption filter
system was used for all tests. Four temperatures (31, 39, 50, and 58 °C) and 5	five pHs (4, 6, 7, 8, 10) were
tested for adsorption. Five pHs (2, 4, 6, 8, 10) of distilled water were tested f	for desorption. Continuous
adsorption studies were conducted with three different concentrations (1, 2, 3 mg/mL) by running the dye	
solution through the STL until it was exhausted. Continuous desorption studies were conducted by	
running pH 2 distilled water solution through exhausted STL. Thise trials we	ere conducted for all tests.
Samples were analyzed using a homemade spectrophotometer	
Adsorption capacity increased from from temperature to 39 C by 10.4 mg/s	and remained constant from
39 to 58 °C. Adsorption capacity remained constant from p/1 4 to 6 and increased by 12.64 mg/g from pH	
6 to 10. Maximum percent desorbed of 26,78% was achieved at pH 2. Percent desorbed decreased from	
0.38% to 0.27% from pH 4 to pH 10 Maximum adsorption capacity increased while time decreased as	
concentration increased but way not affected by pH for continuous adsorption studies. Continuous	
desorption led to 94.44% of dye being desorbed using pH 2 distilled water.	
Maximum adsorption capacity of 7286 mg/ was achieved using 0.6 g of STL and flow rate of 1.46	
mL/min for continuous adsorption sudies with 3 mg/mL dve solution. Maximum adsorption capacity	
increased by 139% from a single cycle to a continuous adsorption study. Desorption studies led to 94.44%	
recovery of dye; so, there is a potential for reuse of dye and STL. It can be concluded from the two-year	
study that this column adsorption filter system using STL can be scaled to ar	industrial level and used as
an effective, low-cost, econtriendly solution for not only the removal but also	the recovery of dye from
wastewater.	
Summary Statement	
Studied vector affecting adsorption and desorption of due by STL using a co	lumn adsorption filter system
to find maximum adsorption canacity and maximum percent desorbed	
Help Received	
My mom supervised this experiment. My parents bought the supplies for this experiment. My teacher let	
me borrow supplies from school.	