

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Name(s)	Project Number
Akhilesh V. Balasingam	
	38424
Project Title	
Gossamer: A Monte Carlo Simulator for the Optimal Design of	
Nanowire Networks for Transparent Electrode Applications	
	$\sum \sum$
Objectives/Goals Abstract	
I have developed a simulator to optimize the performance of a class of electric	ally conductive, transparent
and flexible thin films. Such materials are needed to construct components such panels that are non-rigid and shape-conformable.	has toychscreens and solar
panels that are non-rigid and shape-conformatic.	\checkmark
I focus on films manufactured using "solution-processing" which creates rando	m metal nanowire (MNW)
networks. Large-scale experimental characterization of the resulting sample-to properties is costly and time-consuming. Gossamer, the MC expulsion development	sample variability of film
challenge, allowing scientists to separate systematic effects of convollable na	nufacturing parameters,
from statistical variability.	
I wrote Gossamer in Java and it consists of three modules: (a) a second try engi	ne which generates a
random MNW collection, computes their intersections and creates a list of MN	W segments, (b) a network
analyzer which identifies connected clusters of MAW segments using depth-fi	rst search, and (c) a circuit
visualization.	post-processing and
Results O	
I demonstrate three applications of Gossamer: (i) characterize current hotspots	within the film which
(Di) and areal wire mass density (phi md), and (iii) optimize film conductivity under different tradeoff	
conditions (e.g., Le vs. Di) subject to constant phi_mo constraints.	
Key findings include: (a) when film resistance is plotted as a function of phi n	nd the data falls on a
nearly-universal dimension-independent L-shaped curve, which correlates well with experimental data,	
published recently (2015) by Lagrange and Laggley (b) for each choice of MNW mass density, an optimal	
Conclusions/Discussion	
I developed a physics-based simulator to model the resistance and internal stat	e of a class of conductive
and transparent nanowine-based films, validated it against recently published e	xperimental data and used it
constraints.	der constant mass
Summary Statement	
Gossamer, my MC sumulator, helps accelerate the ongoing search for transpare	ent conductive materials
which are needed for the construction of a wide range of emerging large-area a devices	and flexible electronic
Help Received	
I developed the code and performed the simulations and analysis on my own. I	would like to thank my
field. I would like to thank my school math teacher for helpful discussions and	encouragement.
	Ap2/18