

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Name(s)		Project Number
Alexis T. MacAvoy		
		38464
Project Title		
A Rising Power: Improving the Power Output of Microfold Fuel Cells		
a Solution to Our (Quest for Renewable Energy Sou	irces
Objectives/Goals	Abstract	
As global warming increases	and an energy crisis looms, microbial fuel ce	(MFC) ofter the promise of
clean, renewable power. After	er studying MFC design and function, how de	different substrates.
electrolytes in the cathode, te	emperatures, and nutrients in the anode impact	t power output of a MFC?
Using mud from San Mateo	creek and Bay wetlands, bay glucose NFC w	N produce maximum power
because anaerobic bacteria w	vill thrive with an enriched energy source.	\mathbf{Y}
Methods/Materials		
Mud was collected and sifted	l from San Mateo Creek and Bar wetlands.	MCs were built using a single
cell design with a plastic con	tainer and mud sandwiched between a cathod	and anode graphite discs. 5g
the MEC. For the environme	oth mud sources. Once closed, a hacker bear	EC was maintained at a
the MFC. For the environmental temperature variable, a bay and creek MFC was maintained at a temperature of 28 deg C (controls, 18 deg C). 8 MFCs were allowed to reach power output equilibrium		
after 1 week. Conductivity of mud samples was measured and so of salt added to the cathode side of the		
MFCs. Power output was me	easured using 7 different resistors by pleasurin	ng voltage of the MFC and
calculating power $(V2/R)$ in	microwatts (uW). All MFCs were measured w	with 7 different resistors every
other day until the power out	put declined. Analyses and graphs were perfo	
Results		
By far, the MFC that produce	ed the most power output was ne 'bay glucos	e' MFC: max power 5.75 uW,
day 5. Bay mud had the highest conductivity and the added salt increased the conductivity 100-fold. The lowest internal resistance was by MFC at 47 shifts day 5. All creek MFCs produced little to no power		
regardless of changes.	s bay MFC at 47 onms day 5. All creek MFC	s produced little to no power
Conclusions/Discussion		
The 10-fold power boost for	the bay glucose NEC was due to added nutri	ents enhancing bacterial
performance. Power decline	the bay glucose MEC was due to added nutric observed cross NECs in the last 2 trials may	be a result of MFCs depleting
the nutrient supply. Creek M	F C produce little power likely due to the cl	eanliness of the ecosystem.
Testing multiple resistors de	monstrated that the internal resistance of all the	ne MFCs was abnormally high.
This means that the MFCs to	sta significant amount of power that could hat ientation with MFCs could include using mu	ave been transferred to an
external load. Future experim	ientation with MFCs could include using mu	from bacterial-rich sources,
altering glucose/salt quantitie	es, and building 2-chamber MFCs to improve	lifespan.
Summary Statement		
	ates Alactrolytes in the asthodal temperatures	and nutrients in the anode
I tested how different substrates, electrolytes in the cathode, temperatures, and nutrients in the anode impacted power output of a microbial fuel cell.		
\sim		
Help Received		
My parents bought the supples and drove me to get the mud.		