

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Name(s)	Project Number
James L. Wang	
Project Title	
Improving Mitosis Detection and Localization in Breast/Amcer	
Histology Using Deen Convolutional Neural Networks	
Abstract	
Objectives/Goals To (1) create an enhanced machine learning model for classification of mitrus	breat histology through
transfer learning on pre-trained deep convolutional neural networks and (2) to (evelop a more effective
and accurate algorithm for localizing instances of mitosis in breast histology in	stead of using recurrent
convolutional neural networks.	
Open-source histology slides were first obtained from the MITOS-ATYPIA 14	Grand Challenge These
slides contained 391 instances of mitosis and 741 instances of false-positives	which were extracted
through image segmentation techniques. Data augmentation techniques wave the	nen used to artificially
augment the dataset to 3,000 images, with 1,500 in each class. These images w	ere then fed through a
convolutional neural network for training using MATLAB and an NTLAG	X 1060 graphical
more accurately localize mitosis instances in breast histology.	
Results	
After training this dataset on different transfer learning implementations on well-known pre-trained	
classifier of the VGG16 model yields the best performance, with a 91 33% classification accuracy on a	
reserved test set. Our selection-search based algorithm was able to localize most instances of mitosis on	
histology images; however, some false positive instances were also detected by our algorithm.	
Conclusions/Discussion	
Our histology analysis pipeline's able to localize and accurately classify instances of mitosis in whole-slide images. While we did find limitations in our localization algorithm, they can be improved by	
allowing the reading kernel size to be adaptive to the relative sizes of mitotic instances in each whole slide	
image. Our algorithm design examines the problem of localization with emphasis on accuracy rather than	
efficiency, which has been explored ess in this field of research. The methodol	logy used in this research
can be easily generalized and applied to other medical imaging tasks.	
Summary Statement	
A breast histology analysis nineline was developed to more accurately detect it	stances of mitosis using
transfer learning on convolutional neural networks and by developing a selection	on-search based
localization algorithm	
Halp Received	
Breast histology slide images were acquired from the MITOS ATVDIA 14 Gr	and Challenge Imaga
Dataset. Neural network transfer learning implementations and algorithm design were done independently	
without external guidance.	,
-	