

## CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

| Name(s)                                                                                                                                                                                                                   | Project Number              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Ainesh Arumugam                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                           |                             |
| Project Title                                                                                                                                                                                                             | 38756                       |
| Fabricating Suspended Carbon Microfibers for 3D Carbon                                                                                                                                                                    |                             |
| Microelectromechanical Systems Using Nearfield Electrospinning                                                                                                                                                            |                             |
|                                                                                                                                                                                                                           |                             |
| Abstract                                                                                                                                                                                                                  |                             |
| Objectives/Goals                                                                                                                                                                                                          | nliant and an               |
| Carbon Microelectromechanical Systems (C-MEMS) are used in microfluidic a theorized to be a suitable low cost replacement for today#s silicon based electro                                                               |                             |
| to develop a suspended carbon microfiber lattice for 3D C-MEMS using nearfic                                                                                                                                              | eld electrospinning that    |
| exhibits aligned behavior and has fibers that have a comparable distincter and s                                                                                                                                          | aging as produced through   |
| multilayer photolithography.                                                                                                                                                                                              |                             |
| Polyacrylonitrile (PAN) polymer was dissolved in N-N-dimethylformanide D                                                                                                                                                  | MF) at 40 °C for 24 hours   |
| at a concentration of 9% PAN. This solution was loaded interacting and pur                                                                                                                                                | pped at a flow rate of ~1.0 |
| nL/min. 600 V was applied to the needle charging the polymer, and fiber were drawn onto a silicon wafer                                                                                                                   |                             |
| substrate placed on a grounded aluminum drum rotating at 2000 RPM placed approximately 1 mm from the needle. The syringe was moving laterally at a speed of 60 µm/sec, long the edge of the drum.                         |                             |
| Electrospinning was done at 25.0% relative humidity. This process was repeated after rotating the                                                                                                                         |                             |
| substrate by 90° to get a lattice 3D shape. The PAN fibers were spoilized at 275 °C for 5 hours and then                                                                                                                  |                             |
| pyrolyzed with a constant nitrogen flow rate of 4000 ccm with a gradual increase of temperature up to 900                                                                                                                 |                             |
| <sup>o</sup> C. By varying the RPM and voltage, it was possible to optimize the electrospinning process. The fiber diameter and spacing were measured using a light microscope and the structure was observed with        |                             |
| scanning electron microscopy (SEM).                                                                                                                                                                                       |                             |
| Results                                                                                                                                                                                                                   |                             |
| The 3D fiber lattice had an average diameter of 1.1 um and spacing of 5.7 $\mu$ m. As the RPM increased, the diameter and the spacing of the fiber decreased to a minimum of 0.84 $\mu$ m and 1.87 $\mu$ m, respectively. |                             |
| However, past 2000 RPM, the fiber became discontinuous and lost its aligned state. Higher voltage gave                                                                                                                    |                             |
| coarse and bigger fibers, while lower voltage gaves smooth and smaller fibers, with a minimum of $1.38 \mu\text{m}$                                                                                                       |                             |
| diameter. Below 600 V, the fiber lost is aligned state and began to curve. Voltage variations caused a                                                                                                                    |                             |
| negligible impact on spacing.                                                                                                                                                                                             |                             |
| Conclusions/Discussion<br>The objective of this project was to electrospin a suspended carbon microfiber lattice for 3D C-MEMS                                                                                            |                             |
| The objective of this project was to electrospin a suspended carbon microfiber lattice for 3D C-MEMS with fibers that have a comparable diameter and spacing as those produced by multilayer                              |                             |
| photolithography. The 3D attice #s fibers had an average diameter of 1.1 µm an                                                                                                                                            | d an average spacing of     |
| 5.7 μm, exhibited aligned and suspended behavior, fulfilling all design goals.                                                                                                                                            |                             |
| Summary Statement                                                                                                                                                                                                         |                             |
| I fabricated suspended carbon microfibers in a 3D lattice structure through elec                                                                                                                                          | trospinning, a cheap and    |
| easily scalable process.                                                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                           |                             |
| Help Received                                                                                                                                                                                                             |                             |
| Professor Marc Madou of UCI advised me on my project and assigned me a mentor, Derosh George, who                                                                                                                         |                             |
| helped me throughout the project. Mario Ramos of ITESM of Monterrey, Mexico, and Tuo Zhou of UCI                                                                                                                          |                             |
| trained me on how to perform near field electrospinning.                                                                                                                                                                  |                             |
|                                                                                                                                                                                                                           |                             |