

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Name(s)	Project Number
Braedyn D. Hutchison	
	38772
Project Title	
The "Sweetest" Rocket Candy: Evaluating Sucrose, Glucose, and	
Fructose as Fuels for Sugar-Based Solid Rocket Motors	
Abstract	
Objectives/Goals	
Determine which sugar among Sucrose, Glucose, and Fructose makes the best	
sugar-based solid propellant motors. Gain experience with materials equipmen	t, methods, and safety
precautions necessary for continuing research with higher-energy composite an that are relevant for modern launch, orbital, and space operations	d electric solid propenants
Methods/Materials	7
Solid propellant motors were prepared using a Potassium Nitrate (KNO) oxid	zer with Sucrose
Solid propellant motors were prepared using a Potassium Nitrate (KNO3) oxid (C12H22O11), Glucose (C6H12O6), and Fructose (C6H12O6) sugar fulls. Ob of preparation were recorded. A reusable test motor harness and test firing safe	servations regarding ease
of preparation were recorded. A reusable test motor harness and test firing safe	ty cage were constructed
of durable materials to ensure safe and consistent test conditions. Thus measure	rement equipment was
constructed using a strain-gauge-based single-point load cetha voltage equate	ed instrumentation
amplifier circuit, an analog-to-digital data acquisition device, and a lastop com-	puter. High-sample-rate
thrust data were recorded during test firings of motors prepared with each sugar	fuel. Data were analyzed
in terms of performance metrics and statistical significance/validity.	
Results	
Qualitative observations regarding ease of solid propellant motor preparation as ranking among six factors were: Surrose = 1.67 , Fructose = 2.00 , and Glucose	s the average ordinal
measurements (and ordinal ranking) of the sverage specific impulse produced by solid propellant motors	
were: Sucrose = 129.41s (1), Glucose = 126.17s (2), and Fructose = 124.20s (3) Total scores (qualitative
average rank + quantitative rank) were: Sucrose = 2.67 , Glucose = 4.33 , and Fructose = 5.00 .	
Conclusions/Discussion	
The experimental results of this project provide a clear answer to the research question: Among Sucrose, Glucose, and Fructose, Sucrose (score = 2.67) makes the best choice of sugar fuel for sugar-based solid	
Glucose, and Fructose, Sucrose (score = 2.67) makes the best choice of sugar fuel for sugar-based solid	
propellant motors; Glucose (score = 4.33) makes the second best choice of sugar fuel; and Fructose (score	
= 5.00) makes the third best choice of sugar fue. These results help inform the amateur rocketry	
community regarding the preparation and use of sugar-based solid propellant m	otors for small-scale
rocketry. Further, knowledge and experience gained via this project enable con	tinuing research into
preparation and use of composite and electric solid propellants which are extremed rocketry operations.	nery relevant in current
Tocketry operations.	
Summary Statement	
This project determined which of Sucrose, Glucose, and Fructose makes the be	st choice of sugar fuel for
sugar-based solid tocket motors when evaluated in terms of both quantitative th	rust performance and
qualitative ease of preparation.	I I I I I I I I I I I I I I I I I I I
<u>></u>	
Help Received	
Adult supervision and assistance by Tre Hutchison for procedures involving po	tential safety concerns,
including: operating power tools on exceptionally durable materials, transferring	ng molten propellants to
molds, and designing safety equipment.	