

CALIFORNIA SCIENCE & ENGINEERING FAIR 2018 PROJECT SUMMARY

Name(s)	Project Number
Aadi Duggal; Rishab Lenka; Adrian Liu	
Adu Duggai, Kishab Duka, Aurian Du	\sim
	38802
Project Title	$\langle \rangle$
Investigating Fluid Patterns to Determine the Efficacy	of An Airfoil
investigating Fluid Fatterns to Determine the Enreacy	
	\searrow
Abstract	
Objectives/Goals	
The focus of this research is on the optimization of wind power and airflow, an	the experimental
derivation of drag and lift on energy savings.	
Methods/Materials	
3D printed airfoils were created using the NACA 0012 airfoil and modifying th	• ontrol group to
biomimetically emulate natural designs such as Humpback Whale Tusercles a	well. The force of drag
was experimentally determined by measuring the amount the airfoil was pushed	via a spring scale. The
force of lift was experimentally determined by measuring the change in verget	before and after the
airflow over the airfoils.	
Results	ft forme in the
The results had shown a consistently lower drag force and consistently higher li experimental airfoil, with a delayed stall and flow separation as per the CFD (C	omputer Fluid Dynamics)
simulations.	omputer Fluid Dynamics)
Conclusions/Discussion	
Real world implications include reductions in the uel economy of airplanes, wi	ndmills next-generation
cars, boats and other objects that move through fluids such as ar or water.	indiminis, next generation
Summary Statement	
	mag determined by
The aerodynamic efficacy of different airfoils, inspired from real world species, measuring the different aerodynamic forces on the airfoils, while a CFD simula	, was determined by
results and explain the mechanism.	tion was used to verify our
resurts and explain methodianism.	
Help Received	
David Uken helped us in 3D printing our airfoil	
David Oken helped us in 5D printing our anton	